The descriptive complexity of connectedness in Polish spaces

Autor: Jean Saint Raymond, Gabriel Debs
Přispěvatelé: Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Fundamenta Mathematicae
Fundamenta Mathematicae, Instytut Matematyczny, Polskiej Akademii Nauk, 2020, 249 (3), pp.261-286. ⟨10.4064/fm754-7-2019⟩
ISSN: 0016-2736
1730-6329
DOI: 10.4064/fm754-7-2019⟩
Popis: International audience; We investigate the descriptive complexity of connectedness (pathwise connectedness, local connectedness) of Polish spaces, and prove that even in the frame of finite dimensional euclidean spaces this complexity can be as high as possible, and much beyond the first projective classes Σ 1 1 and Π 1 1. In particular we prove that several of these notions are Π 1 2-complete.
Databáze: OpenAIRE