The descriptive complexity of connectedness in Polish spaces
Autor: | Jean Saint Raymond, Gabriel Debs |
---|---|
Přispěvatelé: | Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Fundamenta Mathematicae Fundamenta Mathematicae, Instytut Matematyczny, Polskiej Akademii Nauk, 2020, 249 (3), pp.261-286. ⟨10.4064/fm754-7-2019⟩ |
ISSN: | 0016-2736 1730-6329 |
DOI: | 10.4064/fm754-7-2019⟩ |
Popis: | International audience; We investigate the descriptive complexity of connectedness (pathwise connectedness, local connectedness) of Polish spaces, and prove that even in the frame of finite dimensional euclidean spaces this complexity can be as high as possible, and much beyond the first projective classes Σ 1 1 and Π 1 1. In particular we prove that several of these notions are Π 1 2-complete. |
Databáze: | OpenAIRE |
Externí odkaz: |