Relaxation Approximation of some Initial-Boundary Value Problem for p-Systems
Autor: | Bernard Hanouzet, Gilles Carbou |
---|---|
Přispěvatelé: | Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2007 |
Předmět: |
Mathematical optimization
General Mathematics 35L50 01 natural sciences Elliptic boundary value problem Suliciu model symbols.namesake boundary conditions Neumann boundary condition [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Boundary value problem 0101 mathematics Zero relaxation limit Mathematics Applied Mathematics 010102 general mathematics Mathematical analysis Mixed boundary condition Robin boundary condition 35B25 010101 applied mathematics $p$-system 35L50 35Q72 35B25 Dirichlet boundary condition symbols No-slip condition 35Q72 Cauchy boundary condition |
Zdroj: | Communications in Mathematical Sciences Communications in Mathematical Sciences, International Press, 2007, 5 (1), pp.187-203 Commun. Math. Sci. 5, iss. 1 (2007), 187-203 |
ISSN: | 1539-6746 1945-0796 |
Popis: | International audience; We consider the Suliciu model which is a relaxation approximation of the $p$-system. In the case of the Dirichlet boundary condition we prove that the local smooth solution of the $p$-system is the zero limit of the Suliciu model solutions. |
Databáze: | OpenAIRE |
Externí odkaz: |