Scalable Alignment of Process Models and Event Logs: An Approach Based on Automata and S-Components

Autor: Dirk Fahland, Marcello La Rosa, Daniel Reißner, Abel Armas-Cervantes, Marlon Dumas, Raffaele Conforti
Přispěvatelé: Process Science, EAISI Foundational
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Information Systems, 94:101561. Elsevier
Information Systems
ISSN: 0306-4379
0304-3975
Popis: Given a model of the expected behavior of a business process and given an event log recording its observed behavior, the problem of business process conformance checking is that of identifying and describing the differences between the process model and the event log. A desirable feature of a conformance checking technique is that it should identify a minimal yet complete set of differences. Existing conformance checking techniques that fulfill this property exhibit limited scalability when confronted to large and complex process models and event logs. One reason for this limitation is that existing techniques compare each execution trace in the log against the process model separately, without reusing computations made for one trace when processing subsequent traces. Yet, the execution traces of a business process typically share common fragments (e.g. prefixes and suffixes). A second reason is that these techniques do not integrate mechanisms to tackle the combinatorial state explosion inherent to process models with high levels of concurrency. This paper presents two techniques that address these sources of inefficiency. The first technique starts by transforming the process model and the event log into two automata. These automata are then compared based on a synchronized product, which is computed using an A* heuristic with an admissible heuristic function, thus guaranteeing that the resulting synchronized product captures all differences and is minimal in size. The synchronized product is then used to extract optimal (minimal-length) alignments between each trace of the log and the closest corresponding trace of the model. By representing the event log as a single automaton, this technique allows computations for shared prefixes and suffixes to be made only once. The second technique decomposes the process model into a set of automata, known as S-components, such that the product of these automata is equal to the automaton of the whole process model. A product automaton is computed for each S-component separately. The resulting product automata are then recomposed into a single product automaton capturing all the differences between the process model and the event log, but without minimality guarantees. An empirical evaluation using 40 real-life event logs shows that, used in tandem, the proposed techniques outperform state-of-the-art baselines in terms of execution times in a vast majority of cases, with improvements ranging from several-fold to one order of magnitude. Moreover, the decomposition-based technique leads to optimal trace alignments for the vast majority of datasets and close to optimal alignments for the remaining ones.
Databáze: OpenAIRE