Efficient Hardware Implementation of Incremental Learning and Inference on Chip

Autor: Nicolas Farrugia, Matthieu Arzel, Vincent Gripon, Ghouthi Boukli Hacene, Michel Jezequel
Přispěvatelé: Département Electronique (IMT Atlantique - ELEC), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Lab-STICC_IMTA_CACS_IAS, Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC), Institut Mines-Télécom [Paris] (IMT)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-Institut Mines-Télécom [Paris] (IMT)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)
Rok vydání: 2019
Předmět:
FOS: Computer and information sciences
[INFO.INFO-GT]Computer Science [cs]/Computer Science and Game Theory [cs.GT]
Artificial neural network
business.industry
Computer science
Computer Vision and Pattern Recognition (cs.CV)
Deep learning
Quantization (signal processing)
Computer Science - Computer Vision and Pattern Recognition
Inference
02 engineering and technology
Chip
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Computer Science::Hardware Architecture
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
020204 information systems
0202 electrical engineering
electronic engineering
information engineering

020201 artificial intelligence & image processing
Artificial intelligence
business
Transfer of learning
Field-programmable gate array
Classifier (UML)
Computer hardware
Zdroj: NEWCAS
NEWCAS 2019 : 17th IEEE International New Circuits and Systems Conference
NEWCAS 2019 : 17th IEEE International New Circuits and Systems Conference, Jun 2019, Munich, Germany. ⟨10.1109/NEWCAS44328.2019.8961310⟩
DOI: 10.1109/newcas44328.2019.8961310
Popis: In this paper, we tackle the problem of incrementally learning a classifier, one example at a time, directly on chip. To this end, we propose an efficient hardware implementation of a recently introduced incremental learning procedure that achieves state-of-the-art performance by combining transfer learning with majority votes and quantization techniques. The proposed design is able to accommodate for both new examples and new classes directly on the chip. We detail the hardware implementation of the method (implemented on FPGA target) and show it requires limited resources while providing a significant acceleration compared to using a CPU.
In 2019 IEEE International NEWCAS Conference
Databáze: OpenAIRE