High-throughput selection of cells based on accumulated growth and division using PicoShell particles

Autor: Mark van Zee, Joseph de Rutte, Rose Rumyan, Cayden Williamson, Trevor Burnes, Randor Radakovits, Andrew Sonico Eugenio, Sara Badih, Sohyung Lee, Dong-Hyun Lee, Maani Archang, Dino Di Carlo
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Proceedings of the National Academy of Sciences of the United States of America
Proceedings of the National Academy of Sciences of the United States of America, vol 119, iss 4
ISSN: 1091-6490
0027-8424
Popis: Significance Current high-throughput cell screening tools do not select cells based on their behavior in production or commercial environments, making it difficult to translate selected cells from the laboratory to commercialization. With PicoShells, we are able to perform high-throughput sorting of cells based on their phenotypic behavior in production-relevant environments, like stirred flasks, and in the presence of background cells, potentially speeding up the development of new biotechnology products by several months to years. In particular, PicoShells enable the selection of clonal colonies based on their overall accumulated growth or production of, for example, chlorophyll over a set period of time, potentially creating a cell selection tool that will improve yields of desired bioproducts.
Production of high-energy lipids by microalgae may provide a sustainable energy source that can help tackle climate change. However, microalgae engineered to produce more lipids usually grow slowly, leading to reduced overall yields. Unfortunately, culture vessels used to select cells based on growth while maintaining high biomass production, such as well plates, water-in-oil droplet emulsions, and nanowell arrays, do not provide production-relevant environments that cells experience in scaled-up cultures (e.g., bioreactors or outdoor cultivation farms). As a result, strains that are developed in the laboratory may not exhibit the same beneficial phenotypic behavior when transferred to industrial production. Here, we introduce PicoShells, picoliter-scale porous hydrogel compartments, that enable >100,000 individual cells to be compartmentalized, cultured in production-relevant environments, and selected based on growth and bioproduct accumulation traits using standard flow cytometers. PicoShells consist of a hollow inner cavity where cells are encapsulated and a porous outer shell that allows for continuous solution exchange with the external environment. PicoShells allow for cell growth directly in culture environments, such as shaking flasks and bioreactors. We experimentally demonstrate that Chlorella sp., Saccharomyces cerevisiae, and Chinese hamster ovary cells, used for bioproduction, grow to significantly larger colony sizes in PicoShells than in water-in-oil droplet emulsions (P < 0.05). We also demonstrate that PicoShells containing faster dividing and growing Chlorella clonal colonies can be selected using a fluorescence-activated cell sorter and regrown. Using the PicoShell process, we select a Chlorella population that accumulates chlorophyll 8% faster than does an unselected population after a single selection cycle.
Databáze: OpenAIRE