Fusion of Physiological and Behavioural Signals on SPD Manifolds with Application to Stress and Pain Detection

Autor: Yujin Wu, Mohamed Daoudi, Ali Amad, Laurent Sparrow, Fabien D'Hondt
Přispěvatelé: Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Nord Europe), Institut Mines-Télécom [Paris] (IMT), Lille Neurosciences & Cognition - U 1172 (LilNCog), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Laboratoire Sciences Cognitives et Sciences Affectives - UMR 9193 (SCALab), Université de Lille-Centre National de la Recherche Scientifique (CNRS), DAOUDI, Mohamed, Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL], Ecole nationale supérieure Mines-Télécom Lille Douai [IMT Nord Europe], Lille Neurosciences & Cognition - U 1172 [LilNCog], Laboratoire Sciences Cognitives et Sciences Affectives - UMR 9193 [SCALab]
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: International Conference on Systems, Man, and Cybernetics
International Conference on Systems, Man, and Cybernetics, Oct 2022, Prague, Czech Republic
Popis: Existing multimodal stress/pain recognition approaches generally extract features from different modalities independently and thus ignore cross-modality correlations. This paper proposes a novel geometric framework for multimodal stress/pain detection utilizing Symmetric Positive Definite (SPD) matrices as a representation that incorporates the correlation relationship of physiological and behavioural signals from covariance and cross-covariance. Considering the non-linearity of the Riemannian manifold of SPD matrices, well-known machine learning techniques are not suited to classify these matrices. Therefore, a tangent space mapping method is adopted to map the derived SPD matrix sequences to the vector sequences in the tangent space where the LSTM-based network can be applied for classification. The proposed framework has been evaluated on two public multimodal datasets, achieving both the state-of-the-art results for stress and pain detection tasks.
International Conference on Systems, Man, and Cybernetics, IEEE SMC 2022, October 9-12, 2022
Databáze: OpenAIRE