Bayesian statistics for the calibration of the LISA Pathfinder experiment

Autor: M Armano, H Audley, G Auger, P Binetruy, M Born, D Bortoluzzi, N Brandt, A Bursi, M Caleno, A Cavalleri, A Cesarini, M Cruise, K Danzmann, I Diepholz, R Dolesi, N Dunbar, L Ferraioli, V Ferroni, E Fitzsimons, M Freschi, C García Marirrodriga, R Gerndt, L Gesa, F Gibert, D Giardini, R Giusteri, C Grimani, I Harrison, G Heinzel, M Hewitson, D Hollington, M Hueller, J Huesler, H Inchauspé, O Jennrich, P Jetzer, B Johlander, N Karnesis, B Kaune, N Korsakova, C Killow, I Lloro, R Maarschalkerweerd, S Madden, D Mance, V Martin, F Martin-Porqueras, I Mateos, P McNamara, J Mendes, E Mitchell, A Moroni, M Nofrarias, S Paczkowski, M Perreur-Lloyd, P Pivato, E Plagnol, P Prat, U Ragnit, J Ramos-Castro, J Reiche, J A Romera Perez, D Robertson, H Rozemeijer, G Russano, P Sarra, A Schleicher, J Slutsky, C F Sopuerta, T Sumner, D Texier, J Thorpe, C Trenkel, H B Tu, D Vetrugno, S Vitale, G Wanner, H Ward, S Waschke, P Wass, D Wealthy, S Wen, W Weber, A Wittchen, C Zanoni, T Ziegler, P Zweifel
Přispěvatelé: AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
History
MATLAB
detector: satellite
Calibration (statistics)
Astronomy
Bayesian probability
Lisa technology packages
Gravity waves
computer.software_genre
Astrophysics
Bayesian statistics
01 natural sciences
Degrees of freedom (mechanics)
LISA Pathfinder
Education
Physics
Applied

Gravitational wave detectors
Theoretical physics
Matlab toolboxes
Operational simulations
0103 physical sciences
numerical methods
ddc:530
[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
noise: acceleration
010306 general physics
Dewey Decimal Classification::500 | Naturwissenschaften
Konferenzschrift
Mathematics
Data processing
010308 nuclear & particles physics
Design of experiments
System identification
statistical analysis: Bayesian
Analysis strategies
gravitational radiation detector
Computer Science Applications
Pathfinder
LISA: calibration
gravitational radiation: emission
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
Bayesian Analysis
Noise (video)
Data mining
ddc:500
Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik
computer
Space probes
Zdroj: J.Phys.Conf.Ser.
Journal of Physics Conference Series 610 (2015)
Journal of Physics: Conference Series 610 (2015), Nr. 1
ISSN: 1742-6588
Popis: The main goal of LISA Pathfinder (LPF) mission is to estimate the acceleration noise models of the overall LISA Technology Package (LTP) experiment on-board. This will be of crucial importance for the future space-based Gravitational-Wave (GW) detectors, like eLISA. Here, we present the Bayesian analysis framework to process the planned system identification experiments designed for that purpose. In particular, we focus on the analysis strategies to predict the accuracy of the parameters that describe the system in all degrees of freedom. The data sets were generated during the latest operational simulations organised by the data analysis team and this work is part of the LTPDA Matlab toolbox. A post-publication change was made to this article on 26 Jun 2020 to add an author.
Databáze: OpenAIRE