LIPSCHITZ EQUIVALENCE OF CANTOR SETS AND IRREDUCIBILITY OF POLYNOMIALS
Autor: | Huo-Jun Ruan, Jun Jason Luo, Yi-Ling Wang |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Mathematics::Dynamical Systems General Mathematics 010102 general mathematics General Topology (math.GN) Mathematics::General Topology Geometric Topology (math.GT) Primary 28A80 Secondary 11R09 Mathematics - Rings and Algebras Lipschitz continuity 01 natural sciences Mathematics - Geometric Topology Rings and Algebras (math.RA) Homogeneous 0103 physical sciences FOS: Mathematics Irreducibility 010307 mathematical physics 0101 mathematics Contraction (operator theory) Mathematics - General Topology Mathematics |
Zdroj: | Mathematika. 64:730-741 |
ISSN: | 2041-7942 0025-5793 |
DOI: | 10.1112/s0025579318000232 |
Popis: | In the paper, we provide an effective method for the Lipschitz equivalence of two-branch Cantor sets and three-branch Cantor sets by studying the irreducibility of polynomials. We also find that any two Cantor sets are Lipschitz equivalent if and only if their contraction vectors are equivalent provided one of the contraction vectors is homogeneous. Comment: 12 pages |
Databáze: | OpenAIRE |
Externí odkaz: |