On the non-commuting graph of dihedral group
Autor: | Rashad Rashid Haji, Ivan Dler Ali, Sanhan Muhammad Salih Khasraw |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
05C30
05C07 05C12 05C31 Applied Mathematics dihedral group non-commuting graph detour distance mean distance Group Theory (math.GR) Dihedral group Graph Combinatorics FOS: Mathematics QA1-939 Mathematics - Combinatorics Discrete Mathematics and Combinatorics Combinatorics (math.CO) Mathematics - Group Theory Mathematics |
Zdroj: | Electronic Journal of Graph Theory and Applications, Vol 8, Iss 2, Pp 233-239 (2020) |
ISSN: | 2338-2287 |
Popis: | For a nonabelian group G, the non-commuting graph $\Gamma_G$ of $G$ is defined as the graph with vertex set $G-Z(G)$, where $Z(G)$ is the center of $G$, and two distinct vertices of $\Gamma_G$ are adjacent if they do not commute in $G$. In this paper, we investigate the detour index, eccentric connectivity and total eccentricity polynomials of non-commuting graph on $D_{2n}$. We also find the mean distance of non-commuting graph on $D_{2n}$. Comment: 8 pages |
Databáze: | OpenAIRE |
Externí odkaz: |