Deriving numerical techniques with zero phase-lag and derivatives for initial value problems of second order
Autor: | T. E. Simos, D. F. Papadopoulos, O. T. Kosmas |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Naturwissenschaftliche Fakultät -ohne weitere Spezifikation
Differential equation Lag pacs:02.30.Xx Mathematical analysis Numerical methods for ordinary differential equations Runge–Kutta methods Ordinary differential equation Initial value problem Boundary value problem Calculus of variations ddc:500 pacs:02.60.Jh pacs:02.60.Lj pacs:02.30.Hq Mathematics |
Popis: | In the present we investigate the advantages of the phase lag analysis for the derivation of phase-fitted techniques on several numerical schemes. Relying on the main characteristics of the phase lag we evaluate the parameters needed firstly for Runge-Kutta methods and secondly for high order variational integration methods, so that the phase lag and its derivatives are zero. The proposed methods are tested for the solution of initial value problems on ordinary differential equations of second order, like the Henon-Heiles model. |
Databáze: | OpenAIRE |
Externí odkaz: |