Construction of Nikulin configurations on some Kummer surfaces and applications
Autor: | Alessandra Sarti, Xavier Roulleau |
---|---|
Přispěvatelé: | Université d'Aix-Marseille, Laboratoire de Mathématiques et Applications (LMA-Poitiers), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU) |
Rok vydání: | 2018 |
Předmět: |
General Mathematics
010102 general mathematics Abelian surface Kummer surface Disjoint sets Automorphism 01 natural sciences 14J28 14J50 14J29 14J10 K3 surface Combinatorics Mathematics - Algebraic Geometry symbols.namesake Mathematics::Algebraic Geometry Surface of general type 0103 physical sciences FOS: Mathematics symbols [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] 010307 mathematical physics [MATH]Mathematics [math] 0101 mathematics Algebraic Geometry (math.AG) Lagrangian Mathematics |
Zdroj: | Mathematische Annalen Mathematische Annalen, Springer Verlag, 2019, 373 (1-2), pp.597-623. ⟨10.1007/s00208-018-1717-5⟩ Mathematische Annalen, 2019, 373 (1-2), pp.597-623. ⟨10.1007/s00208-018-1717-5⟩ |
ISSN: | 1432-1807 0025-5831 |
DOI: | 10.1007/s00208-018-1717-5 |
Popis: | A Nikulin configuration is the data of $16$ disjoint smooth rational curves on a K3 surface. According to a well known result of Nikulin, if a K3 surface contains a Nikulin configuration $\mathcal{C}$, then $X$ is a Kummer surface $X=Km(B)$ where $B$ is an Abelian surface determined by $\mathcal{C}$. Let $B$ be a generic Abelian surface having a polarization $M$ with $M^{2}=k(k+1)$ (for $k>0$ an integer) and let $X=Km(B)$ be the associated Kummer surface. To the natural Nikulin configuration $\mathcal{C}$ on $X=Km(B)$, we associate another Nikulin configuration $\mathcal{C}'$; we denote by $B'$ the Abelian surface associated to $\mathcal{C}'$, so that we have also $X=Km(B')$. For $k\geq2$ we prove that $B$ and $B'$ are not isomorphic. We then construct an infinite order automorphism of the Kummer surface $X$ that occurs naturally from our situation. Associated to the two Nikulin configurations $\mathcal{C},$ $\mathcal{C}'$, there exists a natural bi-double cover $S\to X$, which is a surface of general type. We study this surface which is a Lagrangian surface in the sense of Bogomolov-Tschinkel, and for $k=2$ is a Schoen surface. 22 pages, refereed version |
Databáze: | OpenAIRE |
Externí odkaz: |