An $L_p$-inequality for anticommutators
Autor: | Éric Ricard |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), ANR-19-CE40-0002,ANCG,Analyse non commutative sur les groupes et les groupes quantiques(2019) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Inequality
media_common.quotation_subject [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] 01 natural sciences Combinatorics Mathematics::K-Theory and Homology Mathematics::Quantum Algebra 0103 physical sciences FOS: Mathematics Mathematics::Metric Geometry 0101 mathematics Operator Algebras (math.OA) ComputingMilieux_MISCELLANEOUS Mathematics media_common Mathematics::Functional Analysis Algebra and Number Theory Mathematics::Operator Algebras 010102 general mathematics Mathematics - Operator Algebras Lipschitz continuity Noncommutative geometry Functional Analysis (math.FA) Mathematics - Functional Analysis 010307 mathematical physics Analysis |
Zdroj: | Integral Equations and Operator Theory Integral Equations and Operator Theory, Springer Verlag, 2021, 93 (1), ⟨10.1007/s00020-020-02622-4⟩ |
ISSN: | 0378-620X 1420-8989 |
Popis: | We prove a basic inequality involving anticommutators in noncommutative $$L_p$$ -spaces. We use it to complete our study of the noncommutative Mazur maps from $$L_p$$ to $$L_q$$ showing that they are Lipschitz on balls when $$0 |
Databáze: | OpenAIRE |
Externí odkaz: |