On the stable rank of algebras of operator fields over metric spaces

Autor: Takahiro Sudo, Ping Wong Ng
Rok vydání: 2005
Předmět:
Zdroj: Journal of Functional Analysis. 220(1):228-236
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2004.10.020
Popis: Let G be a finitely generated, torsion-free, two-step nilpotent group. Let C^*(G) be the universal C^*-algebra of G. We show that acsr(C^*(G)) = acsr(C((\hat{G})_1)), where for a unital C^*-algebra A, acsr(A) is the absolute connected stable rank of A, and (\hat{G})_1 is the space of one-dimensional representations of G. For the case of stable rank, we have close results. In the process, we give a stable rank estimate for maximal full algebras of operator fields over a metric space.
6 pages, amstex file
Databáze: OpenAIRE