Apoptosis is induced in post-mitotic rat sympathetic neurons by arabinosides and topoisomerase II inhibitors in the presence of NGF

Autor: Chris E. Tomkins, Susan N. Edwards, Aviva M. Tolkovsky
Rok vydání: 1994
Předmět:
Zdroj: Journal of cell science. 107
ISSN: 0021-9533
Popis: Sympathetic neurons depend on nerve growth factor (NGF) for their survival and die by apoptosis when NGF is withdrawn, despite their post-mitotic state. Martin et al. (1990, J. Neurosci. 10, 184–193) showed that cytosine arabinoside, but no other arabinofuranosyl nucleoside, could induce cell death in the presence of NGF and they suggested that it may block a critical step in the NGF-signalling pathway. We show that cytosine arabinoside is not the only nucleoside capable of inducing apoptosis in sympathetic neurons in the presence of NGF. In newly isolated neurons from P0 rat pups cultured in the presence of NGF, all the arabinose nucleosides (adenine, cytosine, guanine and thymine) induce apoptosis at 10 microM when combined with 5-fluorodeoxyuridine treatment. Because 1-beta-arabinofuranosylcytosine is associated with double-strand breaks and chromosomal abberrations, we examined whether topoisomerase II inhibitors, which also cause double-strand breaks by stabilising the enzyme-DNA ‘cleavable complex’, were capable of promoting apoptosis in these neurons. Although P0 rat neurons are strictly postmitotic, topoisomerase II inhibitors teniposide and mitoxantrone induced them to die by apoptosis in the presence of NGF with the same apparent time-course as arabinose treatment or NGF withdrawal. By contrast, ICRF 193, a catalytic inhibitor of topoisomerase II, reduced the extent of apoptosis induced by mitoxantrone or teniposide by 80% if added simultaneously with the latter but by 2 hours it had no rescue effect, suggesting that topoisomerase II is highly active in these neurons. ICRF 193 also partially reduced the induction of fluorodeoxyuridine-dependent apoptosis by the arabinose nucleosides.(ABSTRACT TRUNCATED AT 250 WORDS)
Databáze: OpenAIRE