The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley
Autor: | Terese Richardson, Evans Lagudah, Jochen Kumlehn, Goetz Hensel, Gabriele Buesing, Beat Keller, Harsh Chauhan, Joanna M. Risk, Libby Viccars, Anna Troller, Liselotte L. Selter, Simon G. Krattinger |
---|---|
Rok vydání: | 2013 |
Předmět: |
0106 biological sciences
Transgene Rust (fungus) Plant Science Plant disease resistance Stem rust Genes Plant 01 natural sciences 03 medical and health sciences Botany Plant breeding Gene Triticum 030304 developmental biology Disease Resistance Plant Diseases 2. Zero hunger Genetics 0303 health sciences biology Gene Transfer Techniques food and beverages Hordeum biology.organism_classification Plants Genetically Modified Transformation (genetics) Phenotype Agronomy and Crop Science Powdery mildew 010606 plant biology & botany Biotechnology |
Zdroj: | Plant biotechnology journal. 11(7) |
ISSN: | 1467-7652 |
Popis: | Summary The Lr34 gene encodes an ABC transporter and has provided wheat with durable, broad- spectrum resistance against multiple fungal pathogens for over 100 years. Because barley does not have an Lr34 ortholog, we expressed Lr34 in barley to investigate its potential as a broad- spectrum resistance resource in another grass species. We found that introduction of the genomic Lr34 sequence confers resistance against barley leaf rust and barley powdery mildew, two pathogens specific for barley but not virulent on wheat. In addition, the barley lines showed enhanced resistance against wheat stem rust. Transformation with the Lr34 cDNA or the genomic susceptible Lr34 allele did not result in increased resistance. Unlike wheat, where Lr34- conferred resistance is associated with adult plants, the genomic Lr34 transgenic barley lines exhibited multipathogen resistance in seedlings. These transgenic barley lines also developed leaf tip necrosis (LTN) in young seedlings, which correlated with an up-regulation of senescence marker genes and several pathogenesis-related (PR) genes. In wheat, transcriptional expression of Lr34 is highest in adult plants and correlates with increased resistance and LTN affecting the last emerging leaf. The severe phenotype of transgenic Lr34 barley resulted in reduced plant growth and total grain weight. These results demonstrate that Lr34 provides enhanced multipathogen resistance early in barley plant development and implies the conservation of the substrate and mechanism of the LR34 transporter and its molecular action between wheat and barley. With controlled gene expression, the use of Lr34 may be valuable for many cereal breeding programmes, particularly given its proven durability. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |