A weak version of the strong exponential closure
Autor: | Antongiulio Fornasiero, Paola D'Aquino, Giuseppina Terzo |
---|---|
Přispěvatelé: | D'Aquino, P., Fornasiero, A., Terzo, G., Terzo, Giuseppina, D'Aquino, Paola, Fornasiero, Antongiulio |
Rok vydání: | 2021 |
Předmět: |
Conjecture
General Mathematics Schanuel's conjecture 010102 general mathematics Dimension (graph theory) Closure (topology) Mathematics - Logic 0102 computer and information sciences Exponential varieties generic point Schanuel’s Conjecture 01 natural sciences Exponential function Generic point Combinatorics Mathematics::Logic 010201 computation theory & mathematics FOS: Mathematics 03C60 11D61 11U09 0101 mathematics Variety (universal algebra) Logic (math.LO) Axiom Mathematics |
Zdroj: | Israel Journal of Mathematics. 242:697-705 |
ISSN: | 1565-8511 0021-2172 |
Popis: | Assuming Schanuel's Conjecture we prove that for any variety V over the algebraic closure over the rational numbers, of dimension n and with dominant projections, there exists a generic point in V. We obtain in this way many instances of the Strong Exponential Closure introduced by Zilber. Comment: 10 pages |
Databáze: | OpenAIRE |
Externí odkaz: |