In vitro biocompatibility evaluation of a heat‐resistant 3D printing material for use in customized cell culture devices

Autor: Steffen Winkler, Katharina V. Meyer, Christopher Heuer, Carlotta Kortmann, Michaela Dehne, Janina Bahnemann
Rok vydání: 2022
Předmět:
Zdroj: Engineering in life sciences (2022), online first
Engineering in life sciences
ISSN: 1618-2863
1618-0240
DOI: 10.1002/elsc.202100104
Popis: Additive manufacturing (3D printing) enables the fabrication of highly customized and complex devices and is therefore increasingly used in the field of life sciences and biotechnology. However, the application of 3D-printed parts in these fields requires not only their biocompatibility but also their sterility. The most common method for sterilizing 3D-printed parts is heat steam sterilization—but most commercially available 3D printing materials cannot withstand high temperatures. In this study, a novel heat-resistant polyacrylate material for high-resolution 3D Multijet printing was evaluated for the first time for its resistance to heat steam sterilization and in vitro biocompatibility with mouse fibroblasts (L929), human embryonic kidney cells (HEK 293E), and yeast (Saccharomyces cerevisiae (S. cerevisiae)). Analysis of the growth and viability of L929 cells and the growth of S. cerevisiae confirmed that the extraction media obtained from 3D-printed parts had no negative effect on the aforementioned cell types, while, in contrast, viability and growth of HEK 293E cells were affected. No different effects of the material on the cells were found when comparing heat steam sterilization and disinfection with ethanol (70%, v/v). In principle, the investigated material shows great potential for high-resolution 3D printing of novel cell culture systems that are highly complex in design, customized and easily sterilizable—however, the biocompatibility of the material for other cell types needs to be re-evaluated.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje