Canard resonance: on noise-induced ordering of trajectories in heterogeneous networks of slow-fast systems

Autor: Francesco Marino, Romain Veltz, Otti D'Huys, Stephane Barland, A. Dolcemascolo
Přispěvatelé: Aston University [Birmingham], Mathématiques pour les Neurosciences (MATHNEURO), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut de Physique de Nice (INPHYNI), Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Istituto Nazionale di Ottica [Firenze] (INO-CNR), Consiglio Nazionale delle Ricerche (CNR), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Dept. of Advanced Computing Sciences, RS: FSE DACS, RS: FSE DACS Mathematics Centre Maastricht
Rok vydání: 2021
Předmět:
c69 - "Mathematical Methods
Programming Models
Mathematical and Simulation Modeling: Other"
noise
STOCHASTIC RESONANCE
MIXED-MODE OSCILLATIONS
semiconductor lasers
laser dynamics
Topology
01 natural sciences
Noise (electronics)
Resonance (particle physics)
010305 fluids & plasmas
slow-fast systems
0103 physical sciences
Electrical and Electronic Engineering
010306 general physics
Dispersion (water waves)
Physics
COHERENCE RESONANCE
BIFURCATION
fully connected networks
Relaxation (iterative method)
DRIVEN
Feedback loop
SEMICONDUCTOR-LASERS
stochastic differential equations
Atomic and Molecular Physics
and Optics

Electronic
Optical and Magnetic Materials

slow-fast dynamical systems
EXCITABILITY
Phase space
Trajectory
Orbit (dynamics)
Mathematical Methods
Mathematical and Simulation Modeling: Other
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Zdroj: Journal of Physics: Photonics
Journal of Physics: Photonics, IOP Science, In press, ⟨10.1088/2515-7647/abcbe3⟩
Journal of Physics: Photonics, inPress, ⟨10.1088/2515-7647/abcbe3⟩
JPhys Photonics, 3(2):024010. IOP Publishing Ltd.
ISSN: 2515-7647
DOI: 10.1088/2515-7647/abcbe3
Popis: We analyse the dynamics of a network of semiconductor lasers coupled via their mean intensity through a non-linear optoelectronic feedback loop. We establish experimentally the excitable character of a single node, which stems from the slow-fast nature of the system, adequately described by a set of rate equations with three well separated time scales. Beyond the excitable regime, the system undergoes relaxation oscillations where the nodes display canard dynamics. We show numerically that, without noise, the coupled system follows an intricate canard trajectory, with the nodes switching on one by one. While incorporating noise leads to a better correspondence between numerical simulations and experimental data, it also has an unexpected ordering effect on the canard orbit, causing the nodes to switch on closer together in time. We find that the dispersion of the trajectories of the network nodes in phase space is minimized for a non-zero noise strength, and call this phenomenon canard resonance.
Databáze: OpenAIRE