Design of small rate, close to ideal, GLDPC-staircase AL-FEC codes for the erasure channel
Autor: | Vincent Roca, Bessem Sayadi, Ferdaouss Mattoussi |
---|---|
Přispěvatelé: | Protocols and applications for the Internet (PLANETE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria), Alcatel Lucent Bell Labs, ALCATEL, Dr. Hossein Eslambolchi (organizing committee general chair), IEEE |
Rok vydání: | 2012 |
Předmět: |
Block code
Computer science List decoding Data_CODINGANDINFORMATIONTHEORY Sequential decoding Luby transform code Expander code Online codes Reed–Solomon error correction Fountain code Turbo code Low-density parity-check code Raptor code Discrete mathematics Error floor Berlekamp–Welch algorithm BCJR algorithm Concatenated error correction code [MATH.MATH-IT]Mathematics [math]/Information Theory [math.IT] Reed–Muller code ACM: D.: Software/D.4: OPERATING SYSTEMS/D.4.4: Communications Management/D.4.4.3: Network communication Serial concatenated convolutional codes Binary erasure channel Linear code [INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT] Erasure Tornado code Erasure code Algorithm Decoding methods |
Zdroj: | GLOBECOM IEEE Globecom 2012 IEEE Globecom 2012, Dr. Hossein Eslambolchi (organizing committee general chair), Dec 2012, Anaheim, United States |
DOI: | 10.1109/glocom.2012.6503433 |
Popis: | International audience; This work introduces the Generalized Low Density Parity Check (GLDPC)-Staircase codes for the erasure channel, that are constructed by extending LDPC-Staircase codes through Reed Solomon (RS) codes based on "quasi" Hankel matrices. This construction has several key benefits: in addition to the LDPC-Staircase repair symbols, it adds extra-repair symbols that can be produced on demand and in large quantities, which provides small rate capabilities. Additionally, with selecting the best internal parameters of GLDPC graph and under hy- brid Iterative/Reed-Solomon/Maximum Likelihood decoding, the GLDPC-Staircase codes feature a very small decoding overhead and a low error floor. These excellent erasure capabilities, close to that of ideal, MDS codes, are obtained both with large and very small objects, whereas, as a matter of comparison, LDPC codes are known to be asymptotically good. Therefore, these properties make GLDPC-Staircase codes an excellent AL-FEC solution for many situations that require erasure protection such as media streaming. |
Databáze: | OpenAIRE |
Externí odkaz: |
Pro tento záznam nejsou dostupné žádné jednotky.