Is uniform persistence a robust property in almost periodic models? A well-behaved family: almost-periodic Nicholson systems
Autor: | Ana M. Sanz, Rafael Obaya |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Class (set theory) Property (philosophy) Sublinear function Dynamical systems theory Differential equation General Physics and Astronomy Dynamical Systems (math.DS) Uniform and strict persistence 01 natural sciences Non-autonomous dynamical systems Hull FOS: Mathematics Mathematics - Dynamical Systems 0101 mathematics Mathematical Physics Mathematics Mathematical and theoretical biology Applied Mathematics 010102 general mathematics Statistical and Nonlinear Physics 010101 applied mathematics Almost periodic Nicholson systems Mathematical biology Persistence (discontinuity) |
Zdroj: | UVaDOC. Repositorio Documental de la Universidad de Valladolid instname |
ISSN: | 1361-6544 0951-7715 |
DOI: | 10.1088/1361-6544/aa92e7 |
Popis: | Producción Científica Using techniques of non-autonomous dynamical systems, we completely characterize the persistence properties of an almost periodic Nicholson system in terms of some numerically computable exponents. Although similar results hold for a class of cooperative and sublinear models, in the general nonautonomous setting one has to consider persistence as a collective property of the family of systems over the hull: the reason is that uniform persistence is not a robust property in models given by almost periodic differential equations. MINECO / FEDER grant MTM2015-66330-P |
Databáze: | OpenAIRE |
Externí odkaz: |