Stieltjes constants appearing in the Laurent expansion of the hyperharmonic zeta function

Autor: Mümün Can, Ayhan Dil, Levent Kargın
Rok vydání: 2022
Předmět:
Zdroj: The Ramanujan Journal.
ISSN: 1572-9303
1382-4090
DOI: 10.1007/s11139-022-00676-z
Popis: In this paper, we consider meromorphic extension of the function \[ \zeta_{h^{\left( r\right) }}\left( s\right) =\sum_{k=1}^{\infty} \frac{h_{k}^{\left( r\right) }}{k^{s}},\text{ }\operatorname{Re}\left( s\right) >r, \] (which we call \textit{hyperharmonic zeta function}) where $h_{n}^{(r)}$ are the hyperharmonic numbers. We establish certain constants, denoted $\gamma_{h^{\left( r\right) }}\left( m\right) $, which naturally occur in the Laurent expansion of $\zeta_{h^{\left( r\right) }}\left( s\right) $. Moreover, we show that the constants $\gamma_{h^{\left( r\right) }}\left( m\right) $ and integrals involving generalized exponential integral can be written as a finite combination of some special constants.
Databáze: OpenAIRE