Stieltjes constants appearing in the Laurent expansion of the hyperharmonic zeta function
Autor: | Mümün Can, Ayhan Dil, Levent Kargın |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | The Ramanujan Journal. |
ISSN: | 1572-9303 1382-4090 |
DOI: | 10.1007/s11139-022-00676-z |
Popis: | In this paper, we consider meromorphic extension of the function \[ \zeta_{h^{\left( r\right) }}\left( s\right) =\sum_{k=1}^{\infty} \frac{h_{k}^{\left( r\right) }}{k^{s}},\text{ }\operatorname{Re}\left( s\right) >r, \] (which we call \textit{hyperharmonic zeta function}) where $h_{n}^{(r)}$ are the hyperharmonic numbers. We establish certain constants, denoted $\gamma_{h^{\left( r\right) }}\left( m\right) $, which naturally occur in the Laurent expansion of $\zeta_{h^{\left( r\right) }}\left( s\right) $. Moreover, we show that the constants $\gamma_{h^{\left( r\right) }}\left( m\right) $ and integrals involving generalized exponential integral can be written as a finite combination of some special constants. |
Databáze: | OpenAIRE |
Externí odkaz: |