Popis: |
A process-engineering model is presented for the stratified-wavy-to-intermittent (SW-I) flow-pattern transition in slightly inclined gas-liquid pipe flow. The main parameter for predicting (in)stability of wavy flow in inclined pipes is the average liquid holdup, which was found to reach a maximum, critical value at flow-pattern transition. Observed values of the critical liquid holdup vary between 0.07 and 0.42, depending on pipe diameter, angle of inclination and transport properties of the gas-liquid system. Measurements were performed in transparent glass pipes of 26- and 51-mm dia., at ten angles of inclination (0.1{degree} {le} {beta} {le} 6.0{degree}), using air/water and air/tetradecane (n-C{sub 14}H{sub 30}) systems at atmospheric pressure. Flow-pattern maps are presented for selected angles of inclination, showing excellent agreement between predicted and observed flow-pattern boundaries. |