iEnhancer-5Step: Identifying enhancers using hidden information of DNA sequences via Chou's 5-step rule and word embedding
Autor: | Nguyen Quoc Khanh Le, Yu-Yen Ou, Quang-Thai Ho, N. Nagasundaram, Edward Kien Yee Yapp, Hui-Yuan Yeh |
---|---|
Přispěvatelé: | School of Humanities |
Rok vydání: | 2019 |
Předmět: |
Web server
Support Vector Machine Word embedding Computer science Sequence analysis Biophysics Genomics Computational biology computer.software_genre Continuous Bag of Words 01 natural sciences Biochemistry Field (computer science) 03 medical and health sciences Humans Skip Gram Enhancer Molecular Biology 030304 developmental biology 0303 health sciences 010401 analytical chemistry Computational Biology Biological sciences [Science] DNA Sequence Analysis DNA Cell Biology 0104 chemical sciences Support vector machine Enhancer Elements Genetic computer Word (computer architecture) |
Zdroj: | Analytical Biochemistry. 571:53-61 |
ISSN: | 0003-2697 |
DOI: | 10.1016/j.ab.2019.02.017 |
Popis: | An enhancer is a short (50–1500bp) region of DNA that plays an important role in gene expression and the production of RNA and proteins. Genetic variation in enhancers has been linked to many human diseases, such as cancer, disorder or inflammatory bowel disease. Due to the importance of enhancers in genomics, the classification of enhancers has become a popular area of research in computational biology. Despite the few computational tools employed to address this problem, their resulting performance still requires improvements. In this study, we treat enhancers by the word embeddings, including sub-word information of its biological words, which then serve as features to be fed into a support vector machine algorithm to classify them. We present iEnhancer-5Step, a web server containing two-layer classifiers to identify enhancers and their strength. We are able to attain an independent test accuracy of 79% and 63.5% in the two layers, respectively. Compared to current predictors on the same dataset, our proposed method is able to yield superior performance as compared to the other methods. Moreover, this study provides a basis for further research that can enrich the field of applying natural language processing techniques in biological sequences. iEnhancer-5Step is freely accessible via http://biologydeep.com/fastenc/. Nanyang Technological University This work has been supported by the Nanyang Technological University Start-Up Grant. |
Databáze: | OpenAIRE |
Externí odkaz: |