Data-driven upscaling of orientation kinematics in suspensions of rigid fibres
Autor: | Francisco Chinesta, Elías Cueto, Suresh G. Advani, Roland Keunings, Adrien Scheuer, Amine Ammar, Emmanuelle Abisset-Chavanne |
---|---|
Přispěvatelé: | Institut de Calcul Intensif (ICI), École Centrale de Nantes (ECN), Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université Catholique de Louvain = Catholic University of Louvain (UCL), Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB), Aragón Institute of Engineering Research [Zaragoza] (I3A), University of Zaragoza - Universidad de Zaragoza [Zaragoza], Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), University of Delaware [Newark] |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
closure approximations
Fibre suspensions data-driven upscaling closure approximations Scale (ratio) Orientation (computer vision) fibre suspensions Context (language use) 02 engineering and technology Kinematics Sciences de l'ingénieur 01 natural sciences Microscopic scale Computer Science Applications Data-driven 010101 applied mathematics [SPI]Engineering Sciences [physics] 020303 mechanical engineering & transports Orientation tensor 0203 mechanical engineering Modeling and Simulation Moment (physics) Statistical physics 0101 mathematics Software data-driven upscaling |
Zdroj: | Computer Modeling in Engineering and Sciences Computer Modeling in Engineering and Sciences, Tech Science Press, 2018, 117 (3), pp.367-386. ⟨10.31614/cmes.2018.04278⟩ |
DOI: | 10.31614/cmes.2018.04278⟩ |
Popis: | International audience; Describing the orientation state of the particles is often critical in fibre suspension applications. Macroscopic descriptors, the so-called second-order orientation tensor (or moment) leading the way, are often preferred due to their low computational cost. Closure problems however arise when evolution equations for the moments are derived from the orientation distribution functions and the impact of the chosen closure is often unpredictable. In this work, our aim is to provide macroscopic simulations of orientation that are cheap, accurate and closure-free. To this end, we propose an innovative data-based approach to the upscaling of orientation kinematics in the context of fibre suspensions. Since the physics at the microscopic scale can be modelled reasonably enough, the idea is to conduct accurate offline direct numerical simulations at that scale and to extract the corresponding macroscopic descriptors in order to build a database of scenarios. During the online stage, the macroscopic descriptors can then be updated quickly by combining adequately the items from the database instead of relying on an imprecise macroscopic model. This methodology is presented in the well-known case of dilute fibre suspensions (where it can be compared against closure-based macroscopic models) and in the case of suspensions of confined or electrically-charged fibres, for which state-of-the-art closures proved to be inadequate or simply do not exist. |
Databáze: | OpenAIRE |
Externí odkaz: |