Neoteric formulas of the monic orthogonal Chebyshev polynomials of the sixth-kind involving moments and linearization formulas
Autor: | Youssri H. Youssri, Waleed M. Abd-Elhameed |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Chebyshev polynomials Algebra and Number Theory Applied Mathematics lcsh:Mathematics lcsh:QA1-939 Connection (mathematics) Zeilberger’s and Petkovsek’s algorithms Moment (mathematics) Connection coefficients Generalized hypergeometric functions Linearization problems Linearization Ordinary differential equation Orthogonal polynomials Moment formulas Hypergeometric function Analysis Monic polynomial Mathematics |
Zdroj: | Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-19 (2021) |
ISSN: | 1687-1847 |
Popis: | The principal aim of the current article is to establish new formulas of Chebyshev polynomials of the sixth-kind. Two different approaches are followed to derive new connection formulas between these polynomials and some other orthogonal polynomials. The connection coefficients are expressed in terms of terminating hypergeometric functions of certain arguments; however, they can be reduced in some cases. New moment formulas of the sixth-kind Chebyshev polynomials are also established, and in virtue of such formulas, linearization formulas of these polynomials are developed. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |