*-Lie-type maps on C*-algebras
Autor: | Ruth Nascimento Ferreira, Bruno Leonardo Macedo Ferreira, Henrique Guzzo Junior, Bruno Tadeu Costa |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Communications in Algebra. 50:5145-5154 |
ISSN: | 1532-4125 0092-7872 |
DOI: | 10.1080/00927872.2022.2082459 |
Popis: | Let $\mathfrak{A}$ and $\mathfrak{A}'$ be two $C^*$-algebras with identities $I_{\mathfrak{A}}$ and $I_{\mathfrak{A}'}$, respectively, and $P_1$ and $P_2 = I_{\mathfrak{A}} - P_1$ nontrivial symmetric projections in $\mathfrak{A}$. In this paper we study the characterization of multiplicative $*$-Lie-type maps. In particular, if $\mathcal{M}$ is a factor von Neumann algebra then every complex scalar multiplication bijective unital multiplicative $*$-Lie-type map is $*$-isomorphism. 15. arXiv admin note: text overlap with arXiv:2005.11430 |
Databáze: | OpenAIRE |
Externí odkaz: |