ARC 3.0: An expanded Python toolbox for atomic physics calculations

Autor: Nikola Šibalić, Elizabeth J. Robertson, Robert Potvliege, Matthew Jones
Přispěvatelé: Joint Quantum Centre (JQC), Laboratoire Charles Fabry / Optique Quantique, Laboratoire Charles Fabry (LCF), Institut d'Optique Graduate School (IOGS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2020
Předmět:
Atomic Physics (physics.atom-ph)
General Physics and Astronomy
Quantum simulator
FOS: Physical sciences
01 natural sciences
010305 fluids & plasmas
Schrödinger equation
Physics - Atomic Physics
symbols.namesake
Ultracold atom
Quantum mechanics
0103 physical sciences
Atom
Physics::Atomic and Molecular Clusters
Physics::Atomic Physics
010306 general physics
Wave function
ComputingMilieux_MISCELLANEOUS
Physics
Condensed Matter::Quantum Gases
Quantum Physics
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]
Degenerate energy levels
Computational Physics (physics.comp-ph)
Quantum technology
Hardware and Architecture
Quantum Gases (cond-mat.quant-gas)
Rydberg formula
symbols
Condensed Matter - Quantum Gases
Quantum Physics (quant-ph)
Physics - Computational Physics
Zdroj: Computer Physics Communications
Computer Physics Communications, Elsevier, 2021, 261, pp.107814. ⟨10.1016/j.cpc.2020.107814⟩
Computer physics communications, 2021, Vol.261(107814) [Peer Reviewed Journal]
ISSN: 0010-4655
DOI: 10.48550/arxiv.2007.12016
Popis: ARC 3.0 is a modular, object-oriented Python library combining data and algorithms to enable the calculation of a range of properties of alkali and divalent atoms. Building on the initial version of the ARC library [N. \v{S}ibali\'c et al, Comput. Phys. Commun. 220, 319 (2017)], which focused on Rydberg states of alkali atoms, this major upgrade introduces support for divalent atoms. It also adds new methods for working with atom-surface interactions, for modelling ultracold atoms in optical lattices and for calculating valence electron wave functions and dynamic polarisabilities. Such calculations have applications in a variety of fields, e.g., in the quantum simulation of many-body physics, in atom-based sensing of DC and AC fields (including in microwave and THz metrology) and in the development of quantum gate protocols. ARC 3.0 comes with an extensive documentation including numerous examples. Its modular structure facilitates its application to a wide range of problems in atom-based quantum technologies.
Comment: 18 pages, 8 figures
Databáze: OpenAIRE