Resolution except for minimal singularities II. The case of four variables

Autor: Pierre Lairez, Pierre D. Milman, Edward Bierstone
Přispěvatelé: Fields Institute for Research In Mathematical Sciences, Department of Mathematics [University of Toronto], University of Toronto, Département de Mathématiques et Applications - ENS Paris (DMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Rok vydání: 2012
Předmět:
Zdroj: Advances in Mathematics
Advances in Mathematics, Elsevier, 2013, 231 (5), pp.3003-3021. ⟨10.1016/j.aim.2012.08.001⟩
ISSN: 0001-8708
1090-2082
DOI: 10.1016/j.aim.2012.08.001
Popis: In this sequel to Resolution except for minimal singularities I, we find the smallest class of singularities in four variables with which we necessarily end up if we resolve singularities except for normal crossings. The main new feature is a characterization of singularities in four variables which occur as limits of triple normal crossings singularities, and which cannot be eliminated by a birational morphism that avoids blowing up normal crossings singularities.
Comment: 23 pages. Section 3 revised. Results unchanged
Databáze: OpenAIRE