Supports and extreme points in Lipschitz-free spaces
Autor: | Ramón J. Aliaga, Eva Pernecká |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Unit sphere
Class (set theory) Triangle inequality 46B20 54E50 General Mathematics Lipschitz-free space Extreme point Lipschitz continuity Space (mathematics) Complete metric space Functional Analysis (math.FA) Combinatorics TECNOLOGIA ELECTRONICA Mathematics - Functional Analysis FOS: Mathematics Support Mathematics |
Zdroj: | RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia instname |
Popis: | For a complete metric space $M$, we prove that the finitely supported extreme points of the unit ball of the Lipschitz-free space $\mathcal{F}(M)$ are precisely the elementary molecules $(\delta(p)-\delta(q))/d(p,q)$ defined by pairs of points $p,q$ in $M$ such that the triangle inequality $d(p,q) Comment: v3: Final version. Corrected an embarrassing mistake in the definition of strongly exposed point |
Databáze: | OpenAIRE |
Externí odkaz: |