Supports and extreme points in Lipschitz-free spaces

Autor: Ramón J. Aliaga, Eva Pernecká
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
Popis: For a complete metric space $M$, we prove that the finitely supported extreme points of the unit ball of the Lipschitz-free space $\mathcal{F}(M)$ are precisely the elementary molecules $(\delta(p)-\delta(q))/d(p,q)$ defined by pairs of points $p,q$ in $M$ such that the triangle inequality $d(p,q)
Comment: v3: Final version. Corrected an embarrassing mistake in the definition of strongly exposed point
Databáze: OpenAIRE