High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules
Autor: | Meghan R. Mapes, Zhaoning Song, Jon M. Stone, Mark D. Dorogi, Jonathan L. DeWitt, Randy J. Ellingson, Patrick Krantz, Adam B. Phillips, Michael J. Heben, Paul J. Roland, John Royston, Ryan Zeller, Gary T. Faykosh, Syed Zafar |
---|---|
Rok vydání: | 2016 |
Předmět: |
Materials science
business.industry Photovoltaic system 02 engineering and technology 021001 nanoscience & nanotechnology Laser 01 natural sciences Q-switching Semiconductor laser theory law.invention 010309 optics Lens (optics) Data acquisition Optics law 0103 physical sciences Optoelectronics 0210 nano-technology business Instrumentation Beam (structure) Diode |
Zdroj: | The Review of scientific instruments. 87(9) |
ISSN: | 1089-7623 |
Popis: | We have developed a laser beam induced current imaging tool for photovoltaic devices and modules that utilizes diode pumped Q-switched lasers. Power densities on the order of one sun (100 mW/cm2) can be produced in a ∼40 μm spot size by operating the lasers at low diode current and high repetition rate. Using galvanostatically controlled mirrors in an overhead configuration and high speed data acquisition, large areas can be scanned in short times. As the beam is rastered, focus is maintained on a flat plane with an electronically controlled lens that is positioned in a coordinated fashion with the movements of the mirrors. The system can also be used in a scribing mode by increasing the diode current and decreasing the repetition rate. In either mode, the instrument can accommodate samples ranging in size from laboratory scale (few cm2) to full modules (1 m2). Customized LabVIEW programs were developed to control the components and acquire, display, and manipulate the data in imaging mode. |
Databáze: | OpenAIRE |
Externí odkaz: |