Monolithic Nanosecond-Reconfigurable 4$\,\times\,$4 Space and Wavelength Selective Cross-Connect
Autor: | A. Rohit, Jeroen Bolk, Xaveer Leijtens, Kevin A. Williams |
---|---|
Přispěvatelé: | Electro-Optical Communication, Photonic Integration |
Rok vydání: | 2012 |
Předmět: |
Optical amplifier
Engineering business.industry Photonic integrated circuit Fan-out Optical power Integrated circuit Optical switch Atomic and Molecular Physics and Optics Arrayed waveguide grating law.invention law Hardware_INTEGRATEDCIRCUITS Electronic engineering Routing (electronic design automation) business |
Zdroj: | Journal of Lightwave Technology, 30(17), 2913-2921. IEEE/LEOS |
ISSN: | 1558-2213 0733-8724 |
DOI: | 10.1109/jlt.2012.2208939 |
Popis: | A monolithic InGaAsP/InP 4 × 4 cross-connect is designed, fabricated and demonstrated. Each of the four inputs fan out to two stages of semiconductor optical amplifier-based gates to perform broadband-input-selection and wavelength-specific-selection. Stages of parallel cyclic arrayed waveguide grating routers and wavelength-agnostic fan-ins allow independent electronically controlled routing of four unique wavelength channels between the four inputs and outputs. The circuit is realized within a 15 mm area on a multi-project wafer. Circuit performance is evaluated by resolving optical power loss within the circuit to show component level performance at and close to design specification. Data routing experiments for wavelength multiplexed signals are performed and quantified in terms of optical power penalty. Multi-path routing is performed with both co- and counter-propagating data. Bi-directional and fast reconfigurable routing is similarly quantified. Low power penalty of less than 1 dB is measured for the simultaneous routing of data over multiple circuit paths. |
Databáze: | OpenAIRE |
Externí odkaz: |