Prediction of insect pest distribution as influenced by elevation: Combining field observations and temperature-dependent development models for the coffee stink bug, Antestiopsis thunbergii (Gmelin)

Autor: Abdullahi Ahmed Yusuf, Abdelmutalab G.A. Azrag, Gladys Mosomtai, Christian Walter Werner Pirk, Saliou Niassy, Régis Babin, Fabrice Pinard
Jazyk: angličtina
Rok vydání: 2018
Předmět:
0106 biological sciences
Climate
lcsh:Medicine
Coffea
01 natural sciences
Population density
Tanzania
Trees
Geographical Locations
Dry season
lcsh:Science
Antestiopsis
education.field_of_study
Ravageur des plantes
Multidisciplinary
biology
Altitude
Temperature
Eukaryota
Agriculture
Berries
Coffea arabica
Plants
Insect Pests
Seasons
Research Article
Wet season
Risk
Farms
P40 - Météorologie et climatologie
Death Rates
Population
010603 evolutionary biology
Fruits
Hemiptera
Pests
Population Metrics
Animals
Computer Simulation
Transect
education
Population Density
Population Biology
lcsh:R
Organisms
Biology and Life Sciences
Models
Theoretical

biology.organism_classification
H10 - Ravageurs des plantes
010602 entomology
Agronomy
People and Places
Africa
Earth Sciences
lcsh:Q
PEST analysis
Animal Distribution
Zdroj: PLoS ONE, Vol 13, Iss 6, p e0199569 (2018)
PLoS ONE
PloS One
ISSN: 1932-6203
Popis: The antestia bug, Antestiopsis thunbergii (Gmelin 1790) is a major pest of Arabica coffee in Africa. The bug prefers coffee at the highest elevations, contrary to other major pests. The objectives of this study were to describe the relationship between A. thunbergii populations and elevation, to elucidate this relationship using our knowledge of the pest thermal biology and to predict the pest distribution under climate warming. Antestiopsis thunbergii population density was assessed in 24 coffee farms located along a transect delimited across an elevation gradient in the range 1000–1700 m asl, on Mt. Kilimanjaro, Tanzania. Density was assessed for three different climatic seasons, the cool dry season in June 2014 and 2015, the short rainy season in October 2014 and the warm dry season in January 2015. The pest distribution was predicted over the same transect using three risk indices: the establishment risk index (ERI), the generation index (GI) and the activity index (AI). These indices were computed using simulated life table parameters obtained from temperature-dependent development models and temperature data from 1) field records using data loggers deployed over the transect and 2) predictions for year 2055 extracted from AFRICLIM database. The observed population density was the highest during the cool dry season and increased significantly with increasing elevation. For current temperature, the ERI increased with an increase in elevation and was therefore distributed similarly to observed populations, contrary to the other indices. This result suggests that immature stage susceptibility to extreme temperatures was a key factor of population distribution as impacted by elevation. In the future, distribution of the risk indices globally indicated a decrease of the risk at low elevation and an increase of the risk at the highest elevations. Based on these results, we concluded with recommendations to mitigate the risk of A. thunbergii infestation.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje