Functional and Structural Diversification of the Anguimorpha Lizard Venom System
Autor: | Lily Wong, Wayne C. Hodgson, Kim Roelants, Laurence J. Miller, J McNaughtan, Holger Scheib, Feng Lin, Hang Fai Kwok, Denis B. Scanlon, Matthias J.P. van Osch, Laura Greisman, Elazar Kochva, Wouter M. Teeuwisse, John A. Karas, Bryan G. Fry, Rob J.A. Nabuurs, Kelly Lee Winter, Janette A Norman, Sanjaya Kuruppu, Christopher Shaw, Fan Gao, Louise van der Weerd |
---|---|
Přispěvatelé: | Amphibian Evolution Lab, Biology, Ecology and Systematics |
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Male
Anguimorpha Molecular Sequence Data venom Venom monster heloderma-suspectum mexican beaded lizard arginine ester hydrolase lectin-like proteins phylogenetic analysis natriuretic peptides toxin sequences snake evolution helothermine Biology Biochemistry complex mixtures Analytical Chemistry Evolution Molecular Rats Sprague-Dawley chemistry.chemical_compound Phylogenetics Animals Humans Amino Acid Sequence Protein Precursors protein evolution toxin Molecular Biology Phylogeny Gene Library Venoms Helothermine Research Lizards Anatomy Venom Protein biology.organism_classification Mexican beaded lizard Rats Secretory protein chemistry Evolutionary biology Snake venom anguimorph lizards Sequence Alignment |
Zdroj: | Molecular and Cellular Proteomics, 9(11), 2369-2390 Vrije Universiteit Brussel |
Popis: | Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this similar to 130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding do-mains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A 2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms. Molecular & Cellular Proteomics 9:2369-2390, 2010. |
Databáze: | OpenAIRE |
Externí odkaz: |