A new approach to norm inequalities on weighted and variable Hardy spaces
Autor: | David Cruz-Uribe, Kabe Moen, Hanh Van Nguyen |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
Inequality Variable exponent General Mathematics media_common.quotation_subject Mathematics::Classical Analysis and ODEs Extrapolation Hardy space Mathematical proof symbols.namesake Mathematics - Classical Analysis and ODEs Norm (mathematics) Classical Analysis and ODEs (math.CA) FOS: Mathematics symbols Singular integral operators 42B20 42B25 42B30 42B35 Mathematics media_common |
Zdroj: | Annales Academiae Scientiarum Fennicae Mathematica. 45:175-198 |
ISSN: | 1798-2383 1239-629X |
DOI: | 10.5186/aasfm.2020.4526 |
Popis: | We give new proofs of Hardy space estimates for fractional and singular integral operators on weighted and variable exponent Hardy spaces. Our proofs consist of several interlocking ideas: finite atomic decompositions in terms of $L^\infty$ atoms, vector-valued inequalities for maximal and other operators, and Rubio de Francia extrapolation. Many of these estimates are not new, but we give new and substantially simpler proofs, which in turn significantly simplifies the proofs of the Hardy spaces inequalities. Comment: A couple minor typos corrected. Removed "showkeys" package for easier reading |
Databáze: | OpenAIRE |
Externí odkaz: |