UDPglucose pyrophosphorylase from Xanthomonas spp. Characterization of the enzyme kinetics, structure and inactivation related to oligomeric dissociation
Autor: | Mabel Cristina Aleanzi, M.B. Bosco, Matías Machtey, Alberto A. Iglesias |
---|---|
Rok vydání: | 2009 |
Předmět: |
Models
Molecular UDPGLUCOSE PYROPHOSPHORYLASE Xanthomonas UTP-Glucose-1-Phosphate Uridylyltransferase Protein Conformation Amino Acid Motifs Genetic Vectors Molecular Sequence Data Biochemistry Protein Structure Secondary Substrate Specificity POLYSACCHARIDES Protein structure Escherichia coli XANTHOMONAS Amino Acid Sequence Enzyme kinetics Cloning Molecular Binding site Conserved Sequence chemistry.chemical_classification Binding Sites Molecular mass biology Otras Ciencias Químicas Ciencias Químicas Gene Amplification General Medicine biology.organism_classification Recombinant Proteins Protein Structure Tertiary Molecular Weight Dissociation constant Kinetics OLIGOMERIC DISSOCIATION Enzyme chemistry Genes Bacterial Transformation Bacterial Dimerization CIENCIAS NATURALES Y EXACTAS Plasmids Protein Binding UTP binding |
Zdroj: | Biochimie. 91:204-213 |
ISSN: | 0300-9084 |
DOI: | 10.1016/j.biochi.2008.09.001 |
Popis: | The genes encoding for UDPglucose pyrophosphorylase in two Xanthomonas spp. were cloned and overexpressed in Escherichia coli. After purification to electrophoretic homogeneity, the recombinant proteins were characterized, and both exhibited similar structural and kinetic properties. They were identified as dimeric proteins of molecular mass 60 kDa, exhibiting relatively high specific activity (∼80 Units/mg) for UDPglucose synthesis. Both enzymes utilized UTP or TTP as substrate with similar affinity. The purified Xanthomonas enzyme was inactivated after dilution into the assay medium. Studies of crosslinking with the bifunctional lysyl reagent bisuberate suggest that inactivation occurs by enzyme dissociation to monomers. UTP effectively protects the enzyme against inactivation, from which a dissociation constant of 15 μM was calculated for the interaction substrate-enzyme. The UTP binding to the enzyme would induce conformational changes in the protein, favoring the subunits interaction to form an active dimer. This view was reinforced by protein modeling of the Xanthomonas enzyme on the basis of the prokaryotic UDPglucose pyrophosphorylase crystallographic structure. The in silico approach pointed out two main critical regions in the enzyme involved in subunit-subunit interaction: the region surrounding the catalytic-substrate binding site and the C-term. © 2008 Elsevier Masson SAS. All rights reserved. Fil: Bosco, Maria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina Fil: Machtey, Matías. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina Fil: Iglesias, Alberto Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina Fil: Aleanzi, Mabel Cristina. Universidad Nacional del Litoral; Argentina |
Databáze: | OpenAIRE |
Externí odkaz: |