Mechanisms of jamming in the Nagel-Schreckenberg model for traffic flow
Autor: | Michael Schreckenberg, Henrik Maria Bette, Thorsten Emig, Lars Habel |
---|---|
Přispěvatelé: | Multiscale Material Science for Energy and Environment (MSE 2), Massachusetts Institute of Technology (MIT), Universität Duisburg-Essen [Essen], Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11) |
Rok vydání: | 2017 |
Předmět: |
[PHYS]Physics [physics]
Physics::Physics and Society Physics Jamming Function (mathematics) Physik (inkl. Astronomie) Nonlinear Sciences::Cellular Automata and Lattice Gases Traffic flow Nagel–Schreckenberg model Random walk 01 natural sciences Cellular automaton 010305 fluids & plasmas Condensed Matter::Soft Condensed Matter 0103 physical sciences Fraction (mathematics) Statistical physics 010306 general physics Scaling ComputingMilieux_MISCELLANEOUS |
Zdroj: | Physical Review E Physical Review E, American Physical Society (APS), 2017, 95 (1), ⟨10.1103/PhysRevE.95.012311⟩ |
ISSN: | 2470-0053 2470-0045 |
DOI: | 10.1103/physreve.95.012311 |
Popis: | We study the Nagel-Schreckenberg cellular automata model for traffic flow by both simulations and analytical techniques. To better understand the nature of the jamming transition, we analyze the fraction of stopped cars P(v=0) as a function of the mean car density. We present a simple argument that yields an estimate for the free density where jamming occurs, and show satisfying agreement with simulation results. We demonstrate that the fraction of jammed cars P(v∈{0,1}) can be decomposed into the three factors (jamming rate, jam lifetime, and jam size) for which we derive, from random walk arguments, exponents that control their scaling close to the critical density. |
Databáze: | OpenAIRE |
Externí odkaz: |