The Walker Function
Autor: | Atila P. Silva Freire, Mikhail D. Mikhailov |
---|---|
Rok vydání: | 2012 |
Předmět: |
Physics
CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS [CNPQ] Logarithm Walker function Turbulence Perturbation (astronomy) Laminar flow Mechanics Hypergeometric functions External flow Physics::Fluid Dynamics Boundary layer Turbulent flows Shear velocity |
Zdroj: | Repositório Institucional da UFRJ Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
ISSN: | 1097-1610 |
DOI: | 10.3888/tmj.14-11 |
Popis: | Submitted by Jairo Amaro (jairo.amaro@sibi.ufrj.br) on 2019-07-01T15:19:00Z No. of bitstreams: 1 2012_FREIRE_TMJ_v14_p1-9-min.pdf: 270987 bytes, checksum: 0cc150d8562215bcc4459b040e9eed29 (MD5) Made available in DSpace on 2019-07-01T15:19:00Z (GMT). No. of bitstreams: 1 2012_FREIRE_TMJ_v14_p1-9-min.pdf: 270987 bytes, checksum: 0cc150d8562215bcc4459b040e9eed29 (MD5) Previous issue date: 2019-03-19 Indisponível. The special function (the Walker function) and its derivatives are important for the description of near-wall turbulent flows. This article gives exact expressions for these functions, based on original identities for the hypergeometric functions 1F1 and pFp . We also introduce a new initial value problem that generates interpolating functions for (the Walker function) and its derivatives. |
Databáze: | OpenAIRE |
Externí odkaz: |