Multi-scale study of microstructure evolution in hot extruded nano-sized TiB2 particle reinforced aluminum composites

Autor: Huiying Wang, G.A. Sun, M.H. Mathon, Dong Chen, Zhe Chen, Shengyi Zhong, Mingliang Wang, Gang Ji, Yurong Wu, András Borbély
Přispěvatelé: Unité Matériaux et Transformations - UMR 8207 (UMET), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut National de la Recherche Agronomique (INRA), Institut de Chimie du CNRS (INC)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Materials & Design
Materials & Design, 2017, Materials & Design, 116, pp.577-590. ⟨10.1016/j.matdes.2016.12.070⟩
Materials and Design
Materials and Design, Elsevier, 2017, Materials & Design, 116, pp.577-590. ⟨10.1016/j.matdes.2016.12.070⟩
Materials & Design, Vol 116, Iss, Pp 577-590 (2017)
ISSN: 0261-3069
0264-1275
Popis: The microstructural evolution of in-situ TiB2 nano-particle reinforced AlZnMgCu composites during hot extrusion was investigated from micro to macro scales by a combination of various techniques, including neutron and synchrotron X-ray diffraction, optical microscopy, scanning and transmission electron microscopy and electron backscatter diffraction (EBSD). The development of microstructure has shown a bimodal grain structure with distinctive spatial distributions of TiB2 particles: the elongated coarse grain structure with smaller dispersed particles and the fine grains mixed with clusters of relatively larger particles. The particle stimulated nucleation occurs at large particle clusters, resulting in recystallized (sub)micron sized fine grains. The dispersed smaller particles are observed to promote dislocation generation and to prohibit recovery. They are shown to reduce the misorientation of low angle grain boundaries due to the pinning effects on independent dislocations, which also lead to the suppression of dynamic recovery and increase of driving force for dynamic recrystallization. Quantitative texture analysis combined with neutron diffraction and EBSD has exhibited the development of a strong 〈111〉 and 〈001〉 dual fiber texture, and both texture volume fractions are changing with the particle content. In addition, the synchrotron diffraction experiments have shown that dislocation density increases with the particle content in both texture components. The microstructure evolution is the result from a complex process of particles/matrix interaction during the deformation and dynamic recrystallization. In comparison with its particle-free alloy counterpart, the thermomechanical response of the composites at high temperature is discussed in terms of aluminum deformation and recrystallization mechanisms combined with nanosized particle effects. Keywords: Nano-sized TiB2 particles, Metal matrix composites, Neutron diffraction, Plastic deformation, Dislocation, Recovery & Recrystallization
Databáze: OpenAIRE