An Optimization Approach to Adaptive Kalman Filtering

Autor: Xiaoming Hu, Maja Karasalo
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Zdroj: CDC
Popis: In this paper, an optimization-based adaptive Kalman filtering method is proposed. The method produces an estimate of the process noise covariance matrix Q by solving an optimization problem over a shortwindow of data. The algorithm recovers the observations h(x) from a system dot x = f(x), y = h(x) + v without a priori knowledge of system dynamics. Potential applications include target tracking using a network of nonlinear sensors, servoing, mapping, and localization. The algorithm isdemonstrated in simulations on a tracking example for a target with coupled and nonlinear kinematics.Simulations indicate superiority overa standard MMAE algorithm for a large class of systems. Uppdaterad till från manuskript till konferensbidrag: 20100722 QC 20100722
Databáze: OpenAIRE