Critical nonlinear Schrödinger equations in higher space dimensions

Autor: Pavel I. Naumkin, Nakao Hayashi, Chunhua Li
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: J. Math. Soc. Japan 70, no. 4 (2018), 1475-1492
Popis: We study the critical nonlinear Schrodinger equations \[ i\partial _{t}u+\frac{1}{2}\Delta u = \lambda \vert u\vert^{{2}/{n}}u, \quad (t,x) \in \mathbb{R}^{+}\times \mathbb{R}^{n}, \] in space dimensions $n\geq 4$, where $\lambda \in \mathbb{R}$. We prove the global in time existence of solutions to the Cauchy problem under the assumption that the absolute value of Fourier transform of the initial data is bounded below by a positive constant. Also we prove the two side sharp time decay estimates of solutions in the uniform norm.
Databáze: OpenAIRE