Revisiting Kneser’s Theorem for Field Extensions

Autor: Gilles Zémor, Christine Bachoc, Oriol Serra
Přispěvatelé: Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Universitat Politècnica de Catalunya [Barcelona] (UPC), Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Pure mathematics
Additive combinatorics
Field theory (Physics)
Matemàtiques i estadística::Àlgebra::Teoria de cossos i polinomis [Àrees temàtiques de la UPC]
11 Number theory::11P Additive number theory [Classificació AMS]
Mathematics::Analysis of PDEs
Field (mathematics)
12 Field theory and polynomials::12F Field extensions [Classificació AMS]
0102 computer and information sciences
01 natural sciences
Separable space
Combinatorics
11 Number theory::11P Additive number theory
partitions [Classificació AMS]
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
FOS: Mathematics
Mathematics - Combinatorics
11P70
Discrete Mathematics and Combinatorics
Number Theory (math.NT)
0101 mathematics
Matemàtiques i estadística::Àlgebra::Teoria de nombres [Àrees temàtiques de la UPC]
ComputingMilieux_MISCELLANEOUS
Mathematics
Teoria de camps (física)
Partitions (Mathematics)
Conjecture
Mathematics - Number Theory
Particions (Matemàtica)
010102 general mathematics
[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]
Extension (predicate logic)
Addition theorem
Computational Mathematics
010201 computation theory & mathematics
Field extension
partitions
linear versions
Combinatorics (math.CO)
Zdroj: Combinatorica
Combinatorica, Springer Verlag, 2018, 38 (4), pp.759-777
Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISSN: 0209-9683
1439-6912
Popis: A Theorem of Hou, Leung and Xiang generalised Kneser's addition Theorem to field extensions. This theorem was known to be valid only in separable extensions, and it was a conjecture of Hou that it should be valid for all extensions. We give an alternative proof of the theorem that also holds in the non-separable case, thus solving Hou's conjecture. This result is a consequence of a strengthening of Hou et al.'s theorem that is a transposition to extension fields of an addition theorem of Balandraud.
17 pages
Databáze: OpenAIRE