Measuring High-Order Interactions in Rhythmic Processes Through Multivariate Spectral Information Decomposition
Autor: | Sebastiano Stramaglia, Daniele Marinazzo, Yuri Antonacci, Davide Nuzzi, Ludovico Minati, Gorana Mijatovic, Riccardo Pernice, Luca Faes |
---|---|
Přispěvatelé: | Antonacci, Yuri, Minati, Ludovico, Nuzzi, Davide, Mijatovic, Gorana, Pernice, Riccardo, Marinazzo, Daniele, Stramaglia, Sebastiano, Faes, Luca |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Brain modeling
Multivariate statistics Technology and Engineering General Computer Science Time series analysi Complex system TIME-SERIES HEART-RATE Time series analysis EEG analysis Information theory MOTOR IMAGERY Matrix decomposition Coupling Frequency-domain analysi Redundancy electronic oscillators Redundancy (engineering) General Materials Science NETWORK Time domain Frequency-domain analysis signal processing TEMPERATURE Parametric statistics information theory Physics FEEDBACK General Engineering climate dynamics Time measurement spectral analysis TK1-9971 Mathematics and Statistics high-order interactions connectivity Frequency domain Couplings Electrical engineering. Electronics. Nuclear engineering Biological system information dynamics Coherence |
Zdroj: | IEEE Access, Vol 9, Pp 149486-149505 (2021) IEEE ACCESS |
ISSN: | 2169-3536 |
Popis: | Many complex systems in physics, biology and engineering are modeled as dynamical networks and described using multivariate time series analysis. Recent developments have shown that the emergent dynamics of a network system are significantly affected by interactions involving multiple network nodes which cannot be described using pairwise links. While these higher-order interactions can be probed using information-theoretic measures, a rigorous framework to describe them in the frequency domain is still lacking. This work presents an approach for the spectral decomposition of multivariate information measures, capable of identifying higher-order synergistic and redundant interactions between oscillatory processes. We show theoretically that synergy and redundancy can coexist at different frequencies among the output signals of a network system and can be detected only using the proposed spectral method. To demonstrate the broad applicability of the framework, we provide parametric and non-parametric data-efficient estimators for the spectral information measures, and employ them to describe multivariate interactions in three complex systems producing rich oscillatory dynamics, namely the human brain, a ring of electronic oscillators, and the global climate system. In these systems, we show that the use of our framework for the spectral decomposition of information measures reveals multivariate and higher-order interactions not detectable in the time domain. Our results are exemplary of how the frequency-specific analysis of multivariate dynamics can aid the implementation of assessment and control strategies in real-world network systems. |
Databáze: | OpenAIRE |
Externí odkaz: |