Logarithmic corrections to $\mathbf{a^2}$ scaling in lattice Yang Mills theory
Autor: | Husung, Nikolai, Marquard, Peter, Sommer, Rainer |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Yang-Mills [gauge field theory]
High Energy Physics::Lattice scaling High Energy Physics - Lattice (hep-lat) lattice field theory FOS: Physical sciences effect [lattice] SU(N) [gauge field theory] nonlinear [sigma model] anomalous dimension effective field theory High Energy Physics - Lattice quantum chromodynamics renormalization group O(N) [sigma model] lattice |
Zdroj: | PoS(LATTICE 2019)188 (2019). doi:10.3204/PUBDB-2020-00037 37th International Symposium on Lattice Field Theory, Wuhan, China, 2019-06-16-2019-06-22 |
DOI: | 10.3204/PUBDB-2020-00037 |
Popis: | We analyse the leading logarithmic corrections to the $a^2$ scaling of lattice artefacts in QCD, following the seminal work of Balog, Niedermayer and Weisz in the O(n) non-linear sigma model. Restricting our attention to contributions from the action, the leading logarithmic corrections can be determined by the anomalous dimensions of a minimal on-shell basis of mass-dimension 6 operators. We present results for the SU(N) pure gauge theory. In this theory the logarithmic corrections reduce the cutoff effects. These computations are the first step towards a study of full lattice QCD at O($a^2$), which is in progress. 7 pages. Contribution to the 37th International Symposium on Lattice Field Theory (LATTICE2019), 16-22 June 2019, Wuhan, China |
Databáze: | OpenAIRE |
Externí odkaz: |