Screening dyslexia for English using HCI measures and machine learning

Autor: Luz Rello, Jeffrey P. Bigham, Nancy Cushen White, Maria Rauschenberger, Enrique Romero, Kristin Williams, Abdullah Ali
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: DH
Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: More than 10% of the population has dyslexia, and most are diagnosed only after they fail in school. This work seeks to change this through early detection via machine learning models that predict dyslexia by observing how people interact with a linguistic computer-based game. We designed items of the game taking into account (i) the empirical linguistic analysis of the errors that people with dyslexia make, and (ii) specific cognitive skills related to dyslexia: Language Skills, Working Memory, Executive Functions, and Perceptual Processes. . Using measures derived from the game, we conducted an experiment with 267 children and adults in order to train a statistical model that predicts readers with and without dyslexia using measures derived from the game. The model was trained and evaluated in a 10-fold cross experiment, reaching 84.62% accuracy using the most informative features.
Databáze: OpenAIRE