Integration of a superconducting nanowire single-photon detector into a confocal microscope for time-resolved photoluminescence (TRPL)-mapping: Sensitivity and time resolution

Autor: Volker Buschmann, Eugeny Ermilov, Felix Koberling, Maria Loidolt-Krüger, Jürgen Breitlow, Hugo Kooiman, Johannes W. N. Los, Jan van Willigen, Martin Caldarola, Andreas Fognini, Mario U. Castaneda, Jessica de Wild, Bart Vermang, Guy Brammertz, Rainer Erdmann
Přispěvatelé: Buschmann, Volker, Ermilov, Eugeny, Koberling, Felix, Loidolt-Krueger, Maria, Breitlow, Jurgen, Kooiman, Hugo, Los, Johannes W. N., van Willigen, Jan, Caldarola, Martin, Fognini, Andreas, Castaneda, Mario U., DE WILD, Jessica, VERMANG, Bart, BRAMMERTZ, Guy, Erdmann, Rainer
Rok vydání: 2023
Předmět:
Zdroj: Review of Scientific Instruments. 94:033703
ISSN: 1089-7623
0034-6748
Popis: This report highlights the combination of the MicroTime 100 upright confocal fluorescence lifetime microscope with a Single Quantum Eos Superconducting Nanowire Single-Photon Detector (SNSPD) system as a powerful tool for photophysical research and applications. We focus on an application in materials science, photoluminescence imaging, and lifetime characterization of Cu(InGa)Se-2 (CIGS) devices intended for solar cells. We demonstrate improved sensitivity, signal-to-noise ratio, and time-resolution in combination with confocal spatial resolution in the near-infrared (NIR) range, specifically in the 1000-1300 nm range. The MicroTime 100-Single Quantum Eos system shows two orders of magnitude higher signal-to-noise ratio for CIGS devices' photoluminescence imaging compared to a standard NIR-photomultiplier tube (NIR-PMT) and a three-fold improvement in time resolution, which is now limited by the laser pulse width. Our results demonstrate the advantages in terms of image quality and time resolution of SNSPDs technology for imaging in materials science.(c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). PicoQuant and Single Quantum thank the European Union’s Horizon 2020 research and innovation program [ATTRACT Phase 2 (Grant Agreement No. 101004462), project: MicroQuaD] for the financial support of this work.
Databáze: OpenAIRE