Quantum Hall valley splitters and tunable Mach-Zehnder interferometer in graphene

Autor: Norio Kumada, Heung-Sun Sim, Kazuyuki Watanabe, Mihee Jo, T. Taniguchi, Geneviève Fleury, Alexandre Assouline, François Parmentier, D. C. Glattli, W. Dumnernpanich, Patrice Roche, P. Brasseur, Preden Roulleau
Přispěvatelé: Groupe Nano-Electronique (GNE), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Groupe Modélisation et Théorie (GMT), Korea Advanced Institute of Science and Technology (KAIST), National Institute for Materials Science (NIMS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), NTT Basic Research Laboratories [Tokio], NTT Basic Research Laboratories
Rok vydání: 2020
Předmět:
Zdroj: Physical Review Letters
Physical Review Letters, 2021, 126 (14), ⟨10.1103/PhysRevLett.126.146803⟩
Physical Review Letters, American Physical Society, 2021, 126 (14), ⟨10.1103/PhysRevLett.126.146803⟩
ISSN: 0031-9007
1079-7114
DOI: 10.48550/arxiv.2011.04958
Popis: International audience; Graphene is a very promising test bed for the field of electron quantum optics. However, a fully tunable and coherent electronic beam splitter is still missing. We report the demonstration of electronic beam splitters in graphene that couple quantum Hall edge channels having opposite valley polarizations. The electronic transmission of our beam splitters can be tuned from zero to near unity. By independently setting the beam splitters at the two corners of a graphene p−n junction to intermediate transmissions, we realize a fully tunable electronic Mach-Zehnder interferometer. This tunability allows us to unambiguously identify the quantum interferences due to the Mach-Zehnder interferometer, and to study their dependence with the beam-splitter transmission and the interferometer bias voltage. The comparison with conventional semiconductor interferometers points toward universal processes driving the quantum decoherence in those two different 2D systems, with graphene being much more robust to their effect.
Databáze: OpenAIRE