Entire Dirichlet series with monotonous coefficients and logarithmic h-measure
Autor: | S. I. Panchuk, T. M. Salo, Oleh Skaskiv |
---|---|
Rok vydání: | 2015 |
Předmět: |
Physics
Mathematics::Functional Analysis Logarithm Continuous function (set theory) Mathematics - Complex Variables Applied Mathematics General Mathematics Entire function 30B20 30D20 Mathematics::Spectral Theory Lambda Absolute convergence Measure (mathematics) Combinatorics symbols.namesake symbols FOS: Mathematics Complex Variables (math.CV) Dirichlet series |
DOI: | 10.48550/arxiv.1512.08032 |
Popis: | Let $F$ be an entire function represented by absolutely convergent for all $z\in\mathbb{C}$ Dirichlet series of the form $ F(z) = \sum\nolimits_{n=0}^{+\infty} a_{n}e^{z\lambda_{n}},$\ where a sequence $(\lambda_n)$ such that $\lambda_n\in\mathbb{R}\ \ (n\geq0)$, $\lambda_n\not=\lambda_k$ for any $n\not=k$ and $(\forall n\geq 0):\ 0\leq\lambda_n |
Databáze: | OpenAIRE |
Externí odkaz: |