Prescribed virtual homological torsion of 3-manifolds
Autor: | Michelle Chu, Daniel Groves |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Popis: | We prove that given any finite abelian group $A$ and any irreducible $3$-manifold $M$ with empty or toroidal boundary which is not a graph manifold there exists a finite cover $M' \to M$ so that $A$ is a direct factor in $H_1(M',\mathbb{Z})$. This generalizes results of Sun and of Friedl-Herrmann. 13 pages, 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |