Structure-Function Relationships Underlying the Replication Fidelity of Viral RNA-Dependent RNA Polymerases

Autor: Seth McDonald, Stéphanie Beaucourt, Grace Campagnola, Olve B. Peersen, Marco Vignuzzi
Přispěvatelé: Colorado State University [Fort Collins] (CSU), Populations virales et Pathogenèse - Viral Populations and Pathogenesis, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), This work was supported by NIH grant R01 AI059130 to O.B.P. and European Research Council starting grant no. 242719 to M.V., European Project: 242719,EC:FP7:ERC,ERC-2009-StG,RNAVIRUSPOPDIVNVAX(2009), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Models
Molecular

Mutation rate
Protein Conformation
[SDV]Life Sciences [q-bio]
Immunology
DNA Mutational Analysis
RNA-dependent RNA polymerase
Crystallography
X-Ray

Virus Replication
Microbiology
Virus
03 medical and health sciences
chemistry.chemical_compound
MESH: Mutant Proteins
MESH: Protein Structure
Tertiary

MESH: Protein Conformation
Virology
RNA polymerase
Humans
[SDV.BBM]Life Sciences [q-bio]/Biochemistry
Molecular Biology

MESH: DNA Mutational Analysis
Polymerase
030304 developmental biology
Genetics
0303 health sciences
MESH: Humans
biology
MESH: Kinetics
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Structural Biology [q-bio.BM]

030302 biochemistry & molecular biology
MESH: Virus Replication
RNA
RNA-Dependent RNA Polymerase
MESH: Crystallography
X-Ray

Enterovirus B
Human

Protein Structure
Tertiary

Genome Replication and Regulation of Viral Gene Expression
Kinetics
Viral replication
chemistry
MESH: Enterovirus B
Human

Insect Science
MESH: RNA
Viral

biology.protein
Tissue tropism
RNA
Viral

Mutant Proteins
MESH: RNA Replicase
MESH: Models
Molecular
Zdroj: Journal of Virology
Journal of Virology, 2015, 89 (1), pp.275-286. ⟨10.1128/JVI.01574-14⟩
Journal of Virology, American Society for Microbiology, 2015, 89 (1), pp.275-286. ⟨10.1128/JVI.01574-14⟩
ISSN: 0022-538X
1098-5514
DOI: 10.1128/JVI.01574-14⟩
Popis: Viral RNA-dependent RNA polymerases are considered to be low-fidelity enzymes, providing high mutation rates that allow for the rapid adaptation of RNA viruses to different host cell environments. Fidelity is tuned to provide the proper balance of virus replication rates, pathogenesis, and tissue tropism needed for virus growth. Using our structures of picornaviral polymerase-RNA elongation complexes, we have previously engineered more than a dozen coxsackievirus B3 polymerase mutations that significantly altered virus replication rates and in vivo fidelity and also provided a set of secondary adaptation mutations after tissue culture passage. Here we report a biochemical analysis of these mutations based on rapid stopped-flow kinetics to determine elongation rates and nucleotide discrimination factors. The data show a spatial separation of fidelity and replication rate effects within the polymerase structure. Mutations in the palm domain have the greatest effects on in vitro nucleotide discrimination, and these effects are strongly correlated with elongation rates and in vivo mutation frequencies, with faster polymerases having lower fidelity. Mutations located at the top of the finger domain, on the other hand, primarily affect elongation rates and have relatively minor effects on fidelity. Similar modulation effects are seen in poliovirus polymerase, an inherently lower-fidelity enzyme where analogous mutations increase nucleotide discrimination. These findings further our understanding of viral RNA-dependent RNA polymerase structure-function relationships and suggest that positive-strand RNA viruses retain a unique palm domain-based active-site closure mechanism to fine-tune replication fidelity. IMPORTANCE Positive-strand RNA viruses represent a major class of human and animal pathogens with significant health and economic impacts. These viruses replicate by using a virally encoded RNA-dependent RNA polymerase enzyme that has low fidelity, generating many mutations that allow the rapid adaptation of these viruses to different tissue types and host cells. In this work, we use a structure-based approach to engineer mutations in viral polymerases and study their effects on in vitro nucleotide discrimination as well as virus growth and genome replication fidelity. These results show that mutation rates can be drastically increased or decreased as a result of single mutations at several key residues in the polymerase palm domain, and this can significantly attenuate virus growth in vivo . These findings provide a pathway for developing live attenuated virus vaccines based on engineering the polymerase to reduce virus fitness.
Databáze: OpenAIRE