Molecular modeling of the human sperm associated antigen 11 B (SPAG11B) proteins

Autor: Suresh Yenugu, Ganapathy Narmadha
Rok vydání: 2015
Předmět:
Zdroj: Systems Biology in Reproductive Medicine. 61:78-88
ISSN: 1939-6376
1939-6368
DOI: 10.3109/19396368.2014.1002139
Popis: Antimicrobial proteins and peptides are ubiquitous in nature with diverse structural and biological properties. Among them, the human beta-defensins are known to contribute to the innate immune response. Besides the defensins, a number of defensin-like proteins and peptides are expressed in many organ systems including the male reproductive system. Some of the protein isoforms encoded by the sperm associated antigen 11B (SPAG11) gene in humans are beta-defensin-like and exhibit structure dependent and salt tolerant antimicrobial activity, besides contributing to sperm maturation. Though some of the functional roles of these proteins are reported, the structural and molecular features that contribute to their antimicrobial activity is not yet reported. In this study, using in silico tools, we report the three dimensional structure of the human SPAG11B proteins and their C-terminal peptides. web-based hydropathy, amphipathicity, and topology (WHAT) analyses and grand average of hydropathy (GRAVY) indices show that these proteins and peptides are amphipathic and highly hydrophilic. Self-optimized prediction method with alignment (SOPMA) analyses and circular dichroism data suggest that the secondary structure of these proteins and peptides primarily contain beta-sheet and random coil structure and alpha-helix to a lesser extent. Ramachandran plots show that majority of the amino acids in these proteins and peptides fall in the permissible regions, thus indicating stable structures. The secondary structure of SPAG11B isoforms and their peptides were not perturbed with increasing NaCl concentration (0-300 mM) and at different pH (3, 7, and 10), thus reinforcing our previously reported observation that their antimicrobial activity is salt tolerant. To the best of our knowledge, for the first time, results of our study provide vital information on the structural features of SPAG11B protein isoforms and their contribution to antimicrobial activity.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje